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Abstract

Background New immuno-oncology (I-O) therapies that

harness the immune system to fight cancer call for a re-

examination of the traditional parametric techniques used

to model survival from clinical trial data. More flexible

approaches are needed to capture the characteristic I-O

pattern of delayed treatment effects and, for a subset of

patients, the plateau of long-term survival.

Objectives Using a systematic approach to data management

and analysis, the study assessed the applicability of traditional

and flexible approaches and, as a test case of flexible methods,

investigated the suitability of restricted cubic splines (RCS) to

model progression-free survival (PFS) in I-O therapy.

Methods The goodness of fit of each survival function was

tested on data from the CheckMate 067 trial of

monotherapy versus combination therapy (nivolumab/ipil-

imumab) in metastatic melanoma using visual inspection

and statistical tests. Extrapolations were validated using

long-term data for ipilimumab.

Results Modelled PFS estimates using traditional methods

did not provide a good fit to the Kaplan–Meier (K–M) curve.

RCS estimates fit the K–M curves well, particularly for the

plateau phase. RCS with six knots provided the best overall

fit, but RCS with one knot performed best at the plateau

phase and was preferred on the grounds of parsimony.

Conclusions RCS models represent a valuable addition to

the range of flexible approaches available to model survival

when assessing the effectiveness and cost-effectiveness of

I-O therapy. A systematic approach to data analysis is

recommended to compare the suitability of different

approaches for different diseases and treatment regimens.

Key Points for Decision Makers

The use of traditional parametric survival functions

can underestimate survival with immuno-oncology

(I-O) therapies, primarily when a plateau of long

term survival is observed, and therefore give a

misleading estimate of life expectancy.

Flexible models including restricted cubic splines

(RCS) can provide a good fit to trial data and valid

extrapolations of clinical trial endpoints, as

demonstrated by the case study of progression free

survival in I-O treatment of melanoma.

Methods including the RCS-based approaches can be

considered an option for survival analysis by health

technology assessment bodies when considering

effectiveness and cost-effectiveness.
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1 Introduction

New drugs under the class of immuno-oncology (I-O)

compounds have the potential to provide lasting survival

benefits and improve quality of life (QoL) for patients with

cancer who previously had very few therapeutic options.

Their novel pharmacodynamic and anticancer properties

were first demonstrated in melanoma patients enrolled in

clinical trials of ipilimumab, a monoclonal antibody that

activates the immune system by targeting cytotoxic

T-lymphocyte-associated protein 4 (CTLA-4) [1, 2]. Ipili-

mumab is the first I-O agent approved for clinical use [3]

and the therapy with the most long-term data [4].

Treatment response has historically been measured in

oncology by tumour shrinkage using the Response Evalu-

ation Criteria in Solid Tumors (RECIST) [5]. For I-O

therapies, response after an initial increase in tumour bur-

den (pseudo-progression1) or in the presence of new

lesion(s) may result in the I-O effect being underestimated

by RECIST. Therefore, to capture anti-tumour kinetics and

evaluate survival endpoints accurately, the immune-related

response criteria (irRECIST) were subsequently developed

[6]. Under irRECIST, response patterns take account of

changes in all lesions, not just target lesions (with new

lesions not considered progressive disease per se) and the

thresholds determining progression or response are higher

than those specified by RECIST [5]. The criteria have not

yet been universally adopted, with fewer than 100 PubMed

citations (last checked 22 May 2017) since its origins in a

series of expert workshops [7]. However, with increasing

awareness of pseudo-progression, pembrolizumab trials

have considered both immune-related and conventional

criteria to assess response in advanced melanoma [8, 9].

The contrasting response in I-O compared with con-

ventional treatments is manifested in the Kaplan–Meier

(K–M) curves of overall survival (OS) and progression-free

survival (PFS). I-O responses have been demonstrated with

ipilimumab [2], combination therapies [10] and pem-

brolizumab [11] in advanced melanoma and in other indi-

cations, including nivolumab in renal cell carcinoma [12].

These consistently display phases of early non-separation

(between treatment and control arm), followed by separa-

tion and long-term survival (plateau) for a subgroup of

patients [13]. The non-separation phase is comparable with

traditional therapy and occurs within the first 3 months.

The separation phase represents delayed treatment effects,

where the T-cell immune response is activated, resulting in

improved survival (Fig. 1a). Beyond 24 months, long-term

survival occurs in a proportion of patients (in contrast with

a steady decline in the comparator arm), represented by an

extended plateau observed in the MDX010-20 study [2],

and consistent with a pooled analysis of 10-year survival

data [4].

Survival curves form the basis of estimates of life

expectancy and quality-adjusted life years (QALYs) gener-

ated by economicmodels and used by policymakers tomake

reimbursement decisions on new drugs. Since a significant

proportion of clinical and economic (costs and QALYs)

value is reflected in the latter part (plateau) of the survival

curve, it is important to understand different methods of data

extrapolation to ensure that the value of I-O therapies is

appropriately captured. Traditional parametric approaches,

largely characterised by monotonic hazards for death from

disease and used to extrapolate survival curves beyond the

trial horizon, potentially underestimate the long-term

impacts of I-O contained within the unique shape of the

survival curve (Fig. 1b). In particular, the plateau of survival

is difficult to accommodate with single parametric functions.

Alternative methods that more accurately estimate the sur-

vival in I-O cohorts are therefore needed [13].

This paper evaluates the suitability of traditional para-

metric approaches compared with flexible models. Of

these, spline-based functions are presented as a case study

in the modelling and extrapolation of I-O survival data

from a randomised phase III registration trial (CheckMate

067 [10]). As noted above, clinical survival endpoints,

particularly OS, are critically important measures for eco-

nomic evaluation. Moreover, the contrasting response

patterns in I-O relative to those observed with conventional

treatment [14] emphasise the importance of PFS which, in

advanced cancer trials, tends to have more mature data

(consistent with trial data used in this paper). As the scope

for extrapolation bias is therefore less with PFS than OS

[15], and long-term follow-up of I-O therapy in advanced

melanoma shows similar patterns for OS and PFS [2],

methods of survival analysis illustrated here were applied

to PFS data. Based on the methodology adopted in this

paper, recommendations are made for a systematic

approach to data analysis and extrapolation for future use

in economic models and I-O submissions to health tech-

nology assessment (HTA) agencies such as the National

Institute for Health and Care Excellence (NICE) [16].

2 Methods

The analysis of survival functions fitted to K–M I-O sur-

vival data followed a systematic approach, initially creat-

ing internal training and validation data sets of patient-level

1 Traditionally, significant tumour growth implies disease progres-

sion and treatment failure. In I-O, an apparent increase in tumour size

or development of new growths revealed by scans of the tumour site

are sometimes found to be an infiltration of the host’s tumour cells

(pseudo-progression) rather than disease progression. These infiltrates

can subsequently clear, with a favourable clinical response being

reported.
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data from CheckMate 067 (over 27 months) to provide

internal validation of the survival techniques being tested.

Subsequently, the heterogeneity of baseline characteristics

between the data sets was assessed, K–M curves plotted

and traditional and flexible survival functions fitted to the

K–M data. The performance of the survival functions fitted

to the data was then compared using visual inspection,

statistical analysis, and assessment of consistency across

data sets. Finally, the ability of the survival functions to

extrapolate beyond the trial data was validated with

available long-term data. Extrapolations based on a curve

which provides a good fit to the data including an apparent

flattening out of the K–M curve may not generate appro-

priate projections of survival and need to be benchmarked

against longer term registry or other observational data

which includes therapies with a similar mode of action

[17].

2.1 CheckMate 067

CheckMate 067 (NCT01844505) was a phase III, double-

blinded clinical trial of 945 treatment-naı̈ve patients with

metastatic melanoma who were randomly assigned 1:1:1 to

the following regimes [10]:

• 1.3 mg/kg of nivolumab (n = 316) every 2 weeks (plus

matched ipilimumab placebo)

• 2.3 mg/kg of ipilimumab (n = 315) every 3 weeks for

four doses (plus matched nivolumab placebo)

• 3.1 mg/kg of nivolumab plus 3 mg/kg of ipilimumab

(n = 314) every 3 weeks for four doses followed by

3 mg/kg of nivolumab every 2 weeks.

Randomisation was stratified by tumour programmed

death-ligand 1 (PD-L1) status, BRAF mutation status (the

gene that encodes the B-Raf protein) and American Joint

Fig. 1 a Kaplan–Meier

survival estimates for all

treatment arms with distinct

phases identified; b log-

cumulative hazard plots for

combination and ipilimumab

arms for the core trial data. PFS

progression-free survival
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Committee on Cancer metastasis stage. Treatment contin-

ued until disease progression (defined by RECIST 1.1), or

when patients experienced unacceptable toxicity or with-

drew from the study. A maximum treatment duration of

2 years was anticipated [18]. Patients could be treated after

progression, if they had clinical benefit with no substantial

adverse effects, as assessed by the investigator [10].

The analysis reported in the current paper is based on

approximately 27 months of patient-level data, including a

follow-up period, for the co-primary endpoint of PFS for

nivolumab plus ipilimumab (n = 314) and ipilimumab

(n = 315) treatment (Fig. 1a). OS data were also available;

however, PFS was the preferred endpoint since the follow-

up for OS was less mature, which is common in advanced

cancer trials. Extrapolated data for OS are therefore more

likely to be biased than those for PFS [15]. While OS may

be more relevant for some decision makers, this paper

focuses on the methods investigated rather than the specific

data set.

2.2 Data Partitioning and Presentation

CheckMate 067 patient-level trial data were randomly

partitioned using a 1:1 ratio into a ‘training’ data set and a

‘validation’ data set. The ‘training’ and ‘validation’ data

sets consisted of patients with a set of common prognostic

indicators and comparably defined time-to-event out-

comes with similar follow-up times. Visual inspection and

analytical techniques were used to evaluate the fit of a

proposed model in the ‘validation’ data set. Other

assessments of performance included a goodness-of-fit

test and a measure of explained variation. We noted that

full validation of a model requires the model to provide a

complete probabilistic description of the data, sufficient to

predict the survival probabilities at any relevant time

point and for any combination of values of the prognostic

factors.

2.3 Data Fitting Methods

The ‘training’ data set was used to assess the initial

goodness of fit to the data of the survival functions tested,

and the ‘validation’ data set was used to confirm the gen-

eralisability of approaches and consistency of results (as

per recommended approaches for internal validation in

survival analysis [15, 19]).

2.3.1 Traditional Methods

Traditional models widely used in survival analysis were

selected for the first set of data analysis. Generally, they

follow an underlying probability distribution with

monotonic or unimodal hazards, with the general consen-

sus that either single, multiple, or adjusted fits can achieve

advanced disease risk profiles [15, 17, 20, 21]. Single fits

with the common traditional parametric models (i.e.

exponential, Weibull, Gompertz, log normal, and log-lo-

gistic) were applied to both treatment arms independently.

Although it has been noted that traditional methods do not

easily accommodate patterns of survival observed with I-O

therapy, they continue to be applied in this context [22, 23]

and represent the baseline against which to compare more

flexible methods.

2.3.2 Flexible Methods: Combined Functions

To overcome some of the drawbacks of traditional meth-

ods, combined functions or piecewise models [17] involve

the fitting of separate parametric functions to distinct

phases of the K–M curve. Judgement is required to achieve

an appropriate division of the data, but hazard plots, par-

ticularly the log cumulative hazard (LCH) plot, can act as a

guide. Using data from the combination therapy arm as an

example, LCH plots exhibited a clear change in hazard

trend at 3 months (Fig. 1b). K–M up to and after the

3-month time point was therefore modelled with separate

Weibull functions. As the data after 3 months did not

display clear hazard trends to justify modelling of addi-

tional phases independently [15], and on grounds of par-

simony, no additional models were fitted to the remaining

data. Nor were other parametric functions considered. In

this case, an alternative and potentially more appropriate

approach to the data analysis would be to combine the K–

M data for the initial 3 months with a parametric function

fitted to the remainder of the K–M curve, as illustrated in

Fig. 2. The function can similarly be fitted to the tail of the

K–M plot if K–M data, rather than data from parametric

functions, are desired for the duration of the in-trial period

[20].

2.3.3 Flexible Methods: Spline-Based Models

Analogous to the combined functions approach, Royston-

Parmar spline-based models are piecewise (polynomial)

functions fitted sequentially to segmented portions of the

data. At the border between data segments, these functions

join at points known as knots [23, 24, 25] and are char-

acterised by a high degree of smoothness at these points,

lending a smooth appearance to the survival function. In

contrast with the Weibull model, which imposes linearity

on the relationship between LCHs and log time, restricted

cubic spline (RCS) models introduce additional flexibility

by allowing this relationship to be nonlinear. RCS models

are constrained to be linear beyond the first and last

(boundary) knots. RCS models were applied to each
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treatment arm independently using the stpm2 package in

Stata statistical software (Fig. 3a–d) [26]. Compromise

between increased flexibility and overfitting was assessed

by analysing the sensitivity of the results to the number of

internal knots (between one and seven). Knots were placed

at evenly distributed centiles of log time for analysis [19],

reducing the inherent uncertainty when seeking optimal

knot placement and allowing for improved reproducibility

of results. This approach mitigates the risk of overfitting,

which can arise if the choice of knots or inflexion points is

data driven.

2.4 Validation

2.4.1 Visual Inspection

Survival functions for the traditional and flexible models in

both treatment arms were compared with the respective K–

M survival curves by means of visual inspection. Interpo-

lation was assessed independently of overall fit and based

on clinical and biological plausibility, at the I-O non-sep-

aration, separation, and plateau phases (Fig. 1a). Emphasis

was placed on the plateau phase given that a poor fit at the

tail of the K–M plot may substantially influence extrapo-

lation estimates. If visual inspection indicated that pro-

portional hazards between the two treatment arms were

violated, this would suggest that a single parametric

function was not appropriate.

2.4.2 Statistical Methods

Akaike information criterion (AIC) and Bayesian information

criterion (BIC) values for the traditional and flexible models

were used to compare data fits in both treatment arms. Models

with the lowest AIC and BIC values are considered to have

the ‘best fit’. The generalisability of the models was also

assessed. On this criterion, simple approaches were preferred

to more complex models, taking account of the risk of over-

parameterisation, particularly when representing the plateau.

If plots of log-cumulative hazard plots displayed lin-

earity, traditional parametric models were deemed more

suitable to estimate I-O survival. However, if plots dis-

played non-linearity, indicating variation in hazard pat-

terns, flexible models were considered more appropriate

[11, 12]. Additionally, goodness of fit was assessed by

examining cumulative hazard plots.

2.4.3 Validation with an External Data Set

Following confirmation of acceptable consistency in results

and data fits in both data sets, extrapolation of survival was

conducted beyond the trial data with the traditional and

flexible models and estimates compared with external PFS

data reported for close to 5-year survival with ipilimumab

(MDX010-20 study) [2]. Furthermore, extrapolated esti-

mates were assessed over a 10-year horizon to assess the

realism of survival trends for implementation in economic

models and for use in informing policy.

Fig. 2 Kaplan–Meier survival

analysis with a Weibull function

fitted to the training data set for

combination therapy. PFS

progression-free survival
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All statistical analyses were performed using Stata

Statistical Software (15 SE, TX: StataCorp LLC).

3 Results

3.1 Data Presentation

Baseline patient characteristics for the nivolumab plus

ipilimumab (n = 314) and ipilimumab (n = 315) treat-

ment arms were comparable across the ‘training’ and

‘validation’ data sets (Table 1). The exception was PD-L1

status, which it is thought might have a role as a biomarker

in I-O (although, in advanced melanoma, evidence sug-

gests treatment response in patients with PD-L1 positive

and negative tumours [10]).

The co-primary endpoint of PFS for the ‘training’ (10.2

and 2.8 months) and ‘validation’ (13.9 and 3.1 months)

data sets fell within the 95% confidence interval (CI) of the

core trial data for nivolumab plus ipilimumab

(11.5 months, 95% CI 8.6–16.7) and ipilimumab

(2.9 months, 95% CI 2.8–3.4) (Table 1).

Visually inspecting the 95% CIs for K–M plots further

supported consistency across the data sets and compara-

bility with the core data, where CIs did not exceed the K–

M estimates and CI widths were similar for all plots.

Increased width was noticed in the last few observations in

the combination treatment group of the ‘training’ data set,

for which patient numbers were very low (Fig. 3a).

3.2 Data Fits

Visual inspection of data fits to the K–M plots on the

‘training’ data set with the traditional parametric methods

(i.e. Weibull, exponential, Gompertz, log normal and log-

logistic) showed a similar lack of fit in the combination

therapy and ipilimumab treatment arms (Fig. 3a, c).

Among the traditional methods, the log-logistic approach

was the best fitting overall, distinguishing between the

separation and plateau phases in the nivolumab plus ipili-

mumab group (n = 160), and providing the best fit to the

plateau phase of the ipilimumab group (n = 149). The

combined model/piecewise function did not provide a good

fit at the plateau phase (Fig. 2).

bFig. 3 Kaplan–Meier survival analysis with traditional (Weibull and

log-logistic) and cubic spline (1 and 7 knots) methods for a combi-

nation therapy arm of the ‘training’ data set, b combination therapy

arm of the ‘validation’ data set, c ipilimumab arm of the ‘training’

data set, and d ipilimumab arm of the ‘validation’ data set. CI

confidence interval, PFS progression-free survival, RCS restricted

cubic spline
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RCS interpolation of the ‘training’ data set for several

internal knots ranging between one and seven produced

results with RCS models using various scales (proportional

hazards RCS, proportional odds RCS, and probit RCS

models), although the proportional hazard RCS model

generally demonstrated better fits. Plots for selected pro-

portional hazard RCS models, hereafter referred to only as

RCS models, in the training data set are presented in

Fig. 3a, c. For both treatment groups, aside from the early

curve (non-separation and part of the separation phases)

between 0 and 5 months, all RCS estimates fell within the

95% CIs and fit the K–M survival estimates well,

particularly for the plateau phase. The best overall fit

including the early curve (between 0 and 5 months) was

seen using the RCS model with six knots. However,

inspection of the plateau phase for the RCS with one

internal knot revealed that this model had the best fit.

Emphasis was placed on the plateau phase, as poor fit at the

tail of the K–M plot would have a considerable impact on

the assessment of clinical value represented by the period

of extrapolation beyond the trial data.

AIC and BIC values for all data fits are presented in

Table 2. Results suggest that, for both treatment arms in

the ‘training’ data set, the exponential model performed

Table 1 Heterogeneity across the training and validation data sets randomly generated from CheckMate 067 and compared to the complete data

set for baseline characteristics and the median progression-free survival

Nivolumab plus ipilimumab Ipilimumab

Core data set (n = 314) Training

data set

(n = 160)

Validation

data set

(n = 154)

Core data set

(n = 315)

Training

data set

(n = 149)

Validation

data set

(n = 166)

Age category (%)

\65 years 59 59 62 58 65 59

C65–\75 years 30 26 31 28 20 28

C75 years 11 15 7 14 15 13

Gender (%)

Male 66 61 70 64 60 68

Female 34 39 30 36 40 33

ECOG score (%)

0 73 78 69 71 75 68

1 26 23 31 29 25 33

2 0 0 0 0 0 0

Metastases stage no. (%)

M1c 58 58 60 58 62 58

M0, M1a or M1b 42 42 40 42 38 42

BRAF status (%)

Mutation 32 28 31 31 30 31

No mutation 68 73 69 69 70 69

Lactate dehydrogenase (%)

BULN 63 68 63 62 60 61

[ULN 36 33 36 37 38 37

B2 9 ULN 88 88 92 87 85 88

[2 9 ULN 12 12 7 10 13 10

Unknown 0 0 2 2 2 2

PD-L1 status (%)

Positive 22 44 48 24 53 37

Negative 67 51 47 64 45 58

Unknown 9 5 5 12 2 5

Coprimary endpoint (months)

PFS 11.5 (95% CI 8.9–16.7) 10.2 13.9 2.9 (95% CI 2.8–3.4) 2.8 3.1

BRAF the gene that encodes the B-Raf protein, CI confidence interval, ECOG Eastern Cooperative Oncology Group, LDH lactate dehydrogenase,

M0 no distant metastasis,M1a metastasis to skin, subcutaneous (below the skin) tissue, or lymph nodes in distant parts of the body, with a normal

blood LDH level, M1b metastasis to the lungs, with a normal blood LDH level, M1c metastasis to any other organs, or distant spread to any site

along with an elevated blood LDH level, PD-L1 programmed death-ligand 1, PFS progression-free survival, ULN upper limit of normal
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least well overall. Among the traditional methods, the log

normal model provided the best fit for the combination

group and the Gompertz model provided the best fit for the

ipilimumab group (Fig. 3a, c).

The log-cumulative hazard plots (Fig. 1b) were char-

acterised by non-parallel lines in the first half of the plot

[for ln (time) between -1 and 1], where hazard patterns

(non-monotonic) differed and the treatment arms diverged,

converged, and then crossed, consistent with the observed

I-O phases.

For the second half of the hazard plot [for ln (time)

between 1 and 3], the lines were relatively straight and

parallel (monotonic), although treatment arms diverged,

remained parallel, then converged. This implied that the

proportional hazards assumption did not hold and a single

parametric model may not be suitable to model survival.

For further justification, cumulative hazard plots for each

treatment were analysed for goodness of fit. Weibull, log-

logistic, log normal and RCS functions with between one

and seven internal knots followed the cumulative hazards

closely in both treatment arms (see Fig. 4a, c for the one-

knot and seven-knot RCS). For the traditional methods, this

was the case for combination therapy only (but these failed

to capture the ‘tail’ of the curve). For the ipilimumab arm,

estimates with the traditional methods were not well mat-

ched to the cumulative hazards.

3.3 Validation

Visual inspection of all data fits and AIC and BIC values

(Table 2) showed comparable trends in the ‘validation’

data set to those in the ‘training’ data set (Fig. 3b, d).

Visual inspection revealed similar data fits overall and to

distinct phases of the K–M plots (for both treatment

groups, the log-logistic model of the traditional approaches

and RCS models with six or seven knots were supported by

AIC and BIC values). Additional analyses of cumulative

hazard plots with 95% CIs for both treatment arms

(Fig. 4b, d) validated selection of the RCS model with one

knot (particularly for the ipilimumab arm) as the preferred

estimator.

Following the confirmation of consistency in data fits

across the ‘training’ and ‘validation’ data sets, extrapola-

tion was conducted on the two data sets separately.

External I-O long-term validation data were used as a

proxy to compare relative trends in the slope of extrapo-

lated survival estimates for the training and validation data

sets of the ipilimumab arm, respectively (Fig. 5a, b). In the

absence of long-term trial data or patient registries, this

was considered a reasonable approach to validation [17].

Validation of extrapolated estimates compared with

external PFS data of up to 4.6 years’ survival for ipili-

mumab in the MDX010-20 trial of ipilimumab plus gp100,

ipilimumab alone and gp100 alone [2] showed that the

RCS models provided the best fit (Fig. 5a, b). While

increasing the number of knots gave a better fit overall, the

one-knot model performed better than the seven-knot

model at the plateau (beyond which accuracy of extrapo-

lated estimates is important to capture anticipated projec-

tions). Given its good overall fit and on the grounds of

parsimony, one knot was considered to be the most suit-

able choice (Fig. 5a, b). In contrast, estimates with the

traditional Weibull model diverged from the external

‘validation’ data, where all patients had progressed by

24 months. By this point in time, traditional methods were

already failing to capture the shape of the I-O survival data,

Table 2 Statistical tests to assess the most suitable survival model to the CheckMate 067 trial data for the training and validation data sets

Training data set Validation data set

Nivolumab ? ipilimumab (n = 154) Ipilimumab (n = 135) Nivolumab ? ipilimumab (n = 150) Ipilimumab (n = 157)

AIC BIC AIC BIC AIC BIC AIC BIC

Weibull 449 455 398 403 428 434 467 473

Exponential 454 457 396 399 437 440 465 468

Gompertz 433 439 385 391 411 417 452 459

Log-logistic 438 444 341 347 421 427 415 421

Log normal 432 438 351 357 417 423 417 423

RCS 1 knot 417 426 301 310 412 421 371 380

RCS 2 knots 419 431 300 312 412 424 365 377

RCS 3 knots 405 420 245 259 414 429- 345 361

RCS 4 knots 398 417 249 266 414 432 312 331

RCS 5 knots 400 422 209 230 416 437 332 353

RCS 6 knots 385 409 213 236 408 432 293 317

RCS 7 knots 394 422 226 252 399 426 304 331

AIC Akaike information criterion, BIC Bayesian information criterion, RCS restricted cubic spline
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leading to an underestimation of the potential gains in

survival.

Lastly, extrapolated estimates were checked for realism.

Visual inspection of the RCS models over 10 years [4]

appeared to show a realistic representation of survival

when compared with external long-term data (Fig. 6a–d).

At 10 years, extrapolated PFS had declined to around 20%,

approximately the level at which the plateau occurred in

the OS data pooled from a number of ipilimumab studies

[4]. The pooled results have not been superimposed on the

10-year survival projections since they relate to OS rather

than PFS.

4 Discussion

As the assessment of long-term effectiveness and cost-ef-

fectiveness is central to decisions made by HTA agencies,

it is important that these decisions are informed by

appropriate extrapolation of survival, to ensure that cal-

culations of life expectancy and QALYs are reflective of

treatment effects. In the appraisal of I-O therapies, the

observed pattern of treatment response is not accurately

captured by traditional survival functions, which typically

exhibit a monotonic trend in hazards. In response, analysts

have developed approaches which combine different

functional forms or combine observed data with modelled

extrapolations. In exploratory modelling, a combination of

exponential curves has been found to give a close match to

registry data in malignant melanoma [15]. However, the

applicability of this for I-O more generally is uncertain as

the novelty of therapies may mean that they are not yet

represented in registry data.

A variant on the combined functions approach is to

append a standard parametric survival function to the

complete K–M curve. In one study based on the MDX010-

20 trial, a parametric function was used to link K–M data

with longer term observational data beyond 5 years [27]. In

this case, choice of the point in the tail of the K–M curve at

which to begin the extrapolation can become problematic,

and it has been argued that applying a survival function to

the full range of data is often preferable [23].

An approach which can be relevant in the I-O context

given the long-term survival potential and which is worthy

of mention here is the cure fraction model, where cure

defines the mortality rate of the diseased group relative to

the general non-diseased population. Two major model

bFig. 4 Cumulative hazard plots for a combination therapy arm of the

‘training’ data set, b combination therapy arm of the ‘validation’ data

set, c ipilimumab arm of the ‘training’ data set, and d ipilimumab arm

of the ‘validation’ data set. CI confidence interval, PFS progression-

free survival, RCS restricted cubic spline
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approaches exist, the mixture and non-mixture types, with

the former being more widely applied to curable diseases.

Such models can offer a useful tool to monitor survival

trends and may reduce bias in OS estimates to improve the

accuracy of economic value assessments. Cure models

have been applied to patient-level data with some success

[28] and also to the economic evaluation of ipilimumab in

advanced melanoma [29]. However, they require evidence

to support an estimate of the fraction of patients ‘cured’

and are therefore potentially more applicable once a bio-

marker/treatment predictor is established. Methods to date

have used matched general population mortality data to

determine the fraction of patients who are considered

‘statistically cured’ [28, 29]. For international trials, data

limitations regarding availability of suitable background

mortality data may cause issues. Furthermore, to accurately

Fig. 5 External validation with

long-term data from Hodi et al.

[2] (ipilimumab data) in the

extrapolated estimates with

traditional and cubic spline

methods applied to the

a ipilimumab arm of the

‘training’ data set and

b ipilimumab arm of the

‘validation’ data set. PFS

progression-free survival, RCS

restricted cubic spline
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identify those who are ‘statistically cured’, mature data are

required [29]. As the OS data used in the current investi-

gation were not considered to be sufficiently mature to

establish a cure-fraction with confidence, and modelling of

PFS is not applicable using cure-rate models, their appli-

cation in the current study was limited and therefore not

undertaken.

The approach to survival modelling based on RCS was

found in this study to give a good fit to I-O data drawn from

one clinical trial among melanoma patients and performed

better than conventional survival functions on the basis of

visual inspection and statistical tests. RCS approaches

therefore merit consideration alongside other flexible

methods as part of the toolkit for the modelling and

extrapolation of survival in this therapy area. When using

these methods, the analyst needs to address issues related to

model selection (Royston [30] suggests strategies for

addressing this) and complexity versus data fit. In line with

Royston, this study showed that it is possible to find a

parsimonious approach with one knot, at little cost in terms

of fit, while attempts to optimise knot placement, which is

always capable of some improvement, may not achieve a

substantial improvement in results [30]. Analytical

tractability should not, however, divert attention from

questions of clinical plausibility and coherence with the

disease process. While spline-based approaches can be

considered candidate techniques for survival analysis, they

will not always be preferred [20].

4.1 Recommendations

While the most appropriate flexible model and form of the

RCS approach will depend on the nature of the data set

being analysed, it is recommended that the analyst take a

systematic approach to data handling, informed by the

steps taken in this paper:

1. Data partitioning: Consistent with existing guidance

[17, 19], we recommend randomly partitioning core

trial data 1:1 into a ‘training’ and ‘validation’ data set

and plotting a 95% CI around the K–M curves to

assess uncertainty and heterogeneity between data sets.

When the dataset is too limited for division into

training and validation data sets (it has been suggested

that, for survival time studies, the test sample size

should be at least 100 [19]) or data splitting is

bFig. 6 Extrapolated estimates with traditional and cubic spline

methods applied for 10 years to the a combination arm of the

‘training’ data set, b combination arm of the ‘validation’ data set,

c ipilimumab arm of the ‘training’ data set, and d ipilimumab arm of

the ‘validation’ data set. PFS progression-free survival, RCS

restricted cubic spline
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inconclusive, then bootstrap resampling can be con-

sidered as a means of internal validation [17]. Rather

than divide the observed data, bootstrapping creates

simulated validation data sets by sampling at random

with replacement from the observed data. Data split-

ting was deemed suitable in this example given the

sample size, while external validation, which has been

proposed as a superior method of validation [19], was

also conducted.

2. Data fits: Interpolation with traditional parametric

methods applied to the ‘training’ data set is recom-

mended, followed by interpolation using flexible

models. In the case of RCS, setting an upper limit on

the number of knots (six has been proposed [20], with

up to seven tested here) and testing of the sensitivity of

results to knot placement are recommended.

3. Goodness of fit: All methods applied to the

‘training’ data set should be assessed by visual

inspection of the overall K–M plot and at distinct

survival periods with emphasis on the plateau,

followed by comparisons of AIC and BIC statistics

(these can highlight the need for multiple evalua-

tions before the optimal fit is determined using

conventional approaches).

4. Model selection: The preferred model should bal-

ance goodness of fit and complexity of the approach

while retaining clinical plausibility. Although the

lowest AIC and BIC values in this example were

associated with the six-knot model (combination

therapy) or seven-knot model (monotherapy), the

RCS model with one knot gave equivalence of fit for

the critical plateau phase of the data. This allowed

model complexity and the risk of overfitting to be

reduced, as well as improving generalisability (fac-

tors to consider alongside goodness of fit and

complexity).

5. Hazard plots: Consistent with guidance on the iden-

tification of hazard trends [15, 17, 20], we recommend

inspection of cumulative and log-cumulative hazards

for both treatment arms to support model selection.

6. Consistency: Steps 2–5 should be repeated for the

‘validation’ data set and consistency of results across

data sets confirmed.

7. Extrapolation and external validation: It is recom-

mended that data fits be extrapolated to available long-

term data (from e.g. registry databases); in this

example, validity was assessed on the first 5 years to

allow comparison of long-term follow-up [2] followed

by long-term extrapolation up to 10 years [4].

4.2 Limitations

The first caveat to note with the analysis is that patient-

level data may not always be accessible. In this case,

published K–M estimates should be extracted and handled

using recognised approaches such as digitally scanning K–

M curves [17]. Although RCS models outperformed all

model classes in this study, consistency in data fits across

the ‘training’ and ‘validation’ data sets may vary. Here, the

multiple checkpoints in goodness of fit and validation

assessments will aid in justifying the choice of model.

Where testing of data fits with AIC or BIC is not possible

because these statistics are not applicable, analysts should

use other tests or the validations provided in the recom-

mendations above to ensure that the optimal model is

selected.

Although our results using combined functions did not

produce favourable results, the analysis was limited to the

extent that additional parametric functions such as log

normal, log-logistic, and Gompertz were not analysed and

may have demonstrated different results. Secondly, K–M

data were combined with only one parametric function to

model survival. Due to the potentially numerous hazard

trends displayed, applying additional functions may have

resulted in improved fit at the tail, and therefore improved

extrapolation estimates. However, on grounds of parsi-

mony, the potential bias arising from small patient numbers

[23], and the substantial subjectivity in choosing data

points at which to implement separate functions [15], fit-

ting a number of different functions may not be a preferred

approach.

When interpreting this analysis, it should be borne in

mind that the single outcome measure of PFS has been

considered, whereas the development of economic models

may involve handling multiple endpoints (e.g. PFS and

OS). In this context, flexible (and other) models can

potentially provide unrealistic estimates. For example,

modelled PFS can exceed modelled OS under extrapola-

tion, thus highlighting the importance of clinical plausi-

bility. Contributing factors to the crossing of OS and PFS

curves may be immature OS data or inclusion of low

patient numbers in the last few observations. However, if a

systematic approach is taken to both endpoints simultane-

ously, this can be handled by selecting different models for

different endpoints, removing the last few observations

[20] or attaching greater weight to the data with the longest

follow-up. Additionally, sensitivity analysis with data fits

for different treatment durations (i.e. trial period vs follow-

up data) can be conducted.
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5 Conclusions

Survival analyses presented in economic evaluations of I-O

continue to be performed using traditional parametric

methods, which do not take into account the mode of action

of I-O therapies [31, 32], thus failing to capture the ‘tail’ of

the survival curve and treatment pathway in extrapolated

estimates. This implies that the clinical value of such

compounds may be underestimated, giving rise to mis-

leading estimates of cost-effectiveness. This study has

shown that spline-based models using a limited number of

knots can provide an acceptable fit to trial data and gen-

erate extrapolated estimates supported by longer term

evidence, with results that are stable in response to changes

in knot placement. By following a robust methodology and

validating findings when using more flexible models, of

which spline-based methods are an example, subjectivity

and uncertainty surrounding the assumptions required for

more complex approaches can be minimised. These models

can be considered a useful addition to the analytical tools

available to estimate survival in I-O. The applicability of

these findings to other conditions and other treatment

regimens (e.g. chemo ? I-O combinations) requires further

exploration.
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trial. The patient-level data are not publicly available, but
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models fitted using the stpm2 command.
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