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ORIGINAL RESEARCH
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Yuane, Ariadna Juarez-Garciae, David Tyasf and Clive Pritcharda
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Medicine, Monash University, Melbourne, Australia; dHealth Economics and Outcomes Research Ltd, Cardiff, UK; eBristol-Myers Squibb,
Plainsboro, NJ, USA; fBristol-Myers Squibb, Uxbridge, UK

ABSTRACT
Background: Model structure, despite being a key source of uncertainty in economic evaluations, is
often not treated as a priority for model development. In oncology, partitioned survival models (PSMs)
and Markov models, both types of cohort model, are commonly used, but patient responses to newer
immuno-oncology (I-O) agents suggest that more innovative model frameworks should be explored.
Objective: A discussion of the theoretical pros and cons of cohort level vs patient level simulation
(PLS) models provides the background for an illustrative comparison of I-O therapies, namely nivolu-
mab/ipilimumab combination and ipilimumab alone using patient level data from the CheckMate 067
trial in metastatic melanoma. PSM, Markov, and PLS models were compared on the basis of coherence
with short-term clinical trial endpoints and long-term cost per QALY outcomes reported.
Methods: The PSM was based on Kaplan-Meier curves from CheckMate 067 with 3-year data on pro-
gression free survival (PFS) and overall survival (OS). The Markov model used time independent transi-
tion probabilities based on the average trajectory of PFS and OS over the trial period. The PLS model
was developed based on baseline characteristics hypothesized to be associated with disease as well as
significant mortality and disease progression risk factors identified through a proportional haz-
ards model.
Results: The short-term Markov model outputs matched the 1–3 year clinical trial results approxi-
mately as well as the PSMs for OS but not PFS. The fixed (average) cohort PLS results corresponded as
well as the PSMs for OS in the combination therapy arm and PFS in the monotherapy arm. Over the
lifetime horizon, the PLS produced an additional 5.95 quality adjusted life years (QALYs) associated
with combination therapy relative to ipilimumab alone, resulting in an incremental cost-effectiveness
ratio (ICER) of £6,474 per QALY, compared with £14,194 for the PSMs which gave an incremental
benefit of between 2.2 and 2.4 QALYs. The Markov model was an outlier (� £49,000 per QALY in the
base case).
Conclusions: The 4- and 5-state versions of the PSM cohort model estimated in this study deviate from
the standard 3-state approach to better capture I-O response patterns. Markov and PLS approaches, by
modeling state transitions explicitly, could be more informative in understanding I-O immune response,
the PLS particularly so by reflecting heterogeneity in treatment response. However, both require a num-
ber of assumptions to capture the immune response effectively. Better I-O representation with surrogate
endpoints in future clinical trials could yield greater model validity across all models.
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Introduction

To make well informed decisions on the use of new tech-
nologies, health technology assessment (HTA) agencies
need to consider the most appropriate evidence regarding
effectiveness and cost-effectiveness. As HTAs are increas-
ingly conducted close to the time of product launch,
extrapolation of critically important data from pivotal trials
is necessary to generate estimates of cost per life year or
quality adjusted life year (QALY) gained over extended
time horizons1.

In the field of oncology, a well-established approach to cost-
effectiveness analysis applied to a range of cancers is the cohort
approach of the 3-state partitioned survival model (PSM)2, based
on the direct implementation of clinical trial endpoints of pro-
gression-free survival (PFS) and overall survival (OS). Tried and
tested approaches to evaluation may, however, need to be re-
assessed as treatment modalities evolve3. A case in point is the
emergence of immuno-oncology (I-O) therapies characterized by
a markedly different mechanism of action compared with con-
ventional anti-cancer agents. The standard 3-state PSM is not
well equipped to capture the unconventional response patterns
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demonstrated in the respective Kaplan-Meier (K-M) curves, PFS
being used to illustrate the distinct phases to which I-O has
given rise4. It is debatable whether a simple distinction between
progressed and progression can adequately reflect the variety of
responses seen with I-O therapies. These include a plateau of
long-term survival in some patients5, response after apparent
disease progression triggered by delayed treatment effects
when the immune response is activated (Figures 1(a) and (b))
and maintenance of health-related quality-of-life over prolonged
time periods6.

These responses have been observed particularly with sin-
gle-agent I-O treatment, although less so with combinations
of I-O and chemotherapy or small molecule drugs. However,
with the continued development of new I-O molecules and
I-O based therapies, it is desirable to explore methods that
can accurately capture immune system interactions, irre-
spective of indication or treatment approach7. Novel
approaches that are better able to capture immune
responses rather than the more immediate but short-lived
response associated with conventional chemotherapy or
radiotherapy have not yet found a wide audience.

General considerations

Although economic modeling inevitably requires some sim-
plification of reality to make the decision problem tractable,
the model structure should still capture the key elements of
the problem to be addressed and be able to adequately
reflect the trajectory of disease, patients’ response to treat-
ment, and their impact on costs and long-term health out-
comes. Model structure can be a key source of uncertainty in
the analysis8, but it generally receives less attention than
other sources of uncertainty, such as that associated with
model inputs (parameter uncertainty)9. Often the rationale
for model selection is unclear and dependent on individual
judgment rather than methodological guidance.

Representation of disease
Existing guidance on model structure emphasizes the import-
ance of the way in which the clinical decision problem is
represented. Sculpher et al.10 recommend that a model
structure should be chosen which is consistent with the
stated decision problem and a theory of disease, a view

Figure 1. CheckMate 067 Kaplan-Meier curves for the co-primary endpoints of (a) progression-free survival (b) overall survival. Abbreviations. PFS, progression-free
survival; OS, overall survival.
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echoed by Brennan et al.11, who argue that the states in a
model should represent the natural history of disease, avail-
able treatments, and treatment effects.

Good practice guidance for decision analytic modeling
notes that “the structure of the model should be consistent
with a coherent theory of the health condition being mod-
eled”, and “with available evidence regarding causal linkages
between variables”12. Similarly, in the specific context of
state transition models (STMs), which define the decision
problem in terms of a number of health states and move-
ments between those states; “specification of states and tran-
sitions should generally reflect the biological/theoretical
understanding of the disease or condition being modeled”13.
Inclusion of additional subdivisions of health states may be
based on their clinical importance or their relation to mortal-
ity, quality-of-life/patient preference, and resource
use/costs12.

Study question

This paper extends a program of research being undertaken
on innovative approaches to economic modeling and more
accurate survival extrapolation14 in I-O to represent clinical
trial and long-term observational data in a more meaningful
way. It builds on a previous comparison15 of the 3-state PSM
and extensions thereof vs a Markov modeling approach (a
commonly used structure in health care evaluations) to rep-
resent I-O therapies (Figure 2).

The paper considers the role of patient level simulation
(PLS) as an alternative and exploratory model framework to
evaluate a case study of combination I-O therapy vs I-O

monotherapy. The contribution of the paper is, therefore, to
apply a novel modeling approach to an illustrative evaluation
of cost-effectiveness within the field of oncology. While the
clinical trial on which the analysis is based compared nivolu-
mab alone, ipilimumab alone, and nivolumab/ipilimumab com-
bination, this evaluation focuses on a comparison of
combination therapy and ipilimumab monotherapy only. As an
illustrative evaluation, it is not intended to capture all compari-
sons of clinical interest, but is consistent with the comparison
undertaken for NICE Technology Appraisal 400 (TA400)16.

Each modeling approach has advantages and disadvan-
tages, but all have the same underlying objective of generat-
ing estimates of cost-effectiveness. The models reported here
are all underpinned by a common patient level data set
drawn from an ongoing phase III trial (CheckMate 067) in
metastatic melanoma17,18. The analysis is based on clinical
trial end-points observed at up to 3 years (4-year data has
now been published19). Modeled estimates of PFS and OS
over the time horizon of the trial (up to 3 years) were com-
pared with the trial results and the different models were
compared in terms of the estimates of costs, life years and
QALYs generated. Before reporting the methods and results
of the empirical research, the paper reviews the theoretical
pros and cons of the three modeling approaches explored.

Organization of the paper

The following section on “Model structures” provides an over-
view of cohort models, which encompass PSM and Markov
approaches, as opposed to individual level models, including
the advantages and disadvantages of each. The “Methods:

Figure 2. PSM-based and Markov model frameworks modeled over a lifetime horizon with monthly cycles: (a) conventional three state partitional survival model
(PSM); (b) conventional PSM with the additional health state to differentiate levels of response; (c) conventional PSM with additional states to differentiate levels of
response and progression types; and (d) immune-response based Markov model.
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empirical analysis” section focuses on the methods used to
estimate the PLS. As the methods underpinning the PSM-based
and Markov models have been described elsewhere15, they are
not reproduced in detail here. Considering that the choice of
model is as much an empirical as a theoretical question20, the
“Results” section compares the PLS results with those of the
PSM-based and Markov models. A “Discussion” section reflects
on the methods and findings of the analysis.

Model structures

Partitioned survival model (PSM)

PSMs or area under the curve models proceed by segment-
ing the population of interest on the basis of the OS curve.
Typically, patients are differentiated according to whether or
not their disease has progressed. PFS is plotted as a sub-set
of OS, with the difference between OS and PFS comprising
those with progressive disease. The PSM has become a
standard approach in the evaluation of treatments for
advanced and metastatic cancers2. Figures 2(a–c) illustrate
the basic PSM structure which has been applied to the ana-
lysis of I-O therapies21,22, and the extensions of that model
developed in previous research15. These structures are under-
pinned by K-M curves from the CheckMate 067 trial on OS
(Figure 1(a)) and PFS (Figure 1(b)).

Pros and cons
Patient level or published K-M data on OS and PFS can be
mapped directly on to the 3-state model, making the PSM
straightforward to implement from a single trial, with few

assumptions required. Time in progression is calculated as
the area between OS and PFS (hence the term “area under
the curve”). As with other cohort models, “pre-progression”
and “progressed” health states follow an average patient
population in which homogeneity of risks is assumed11.
Although variability in baseline characteristics (e.g. age) can
be captured using suitable age-dependent distributions, an
average cohort is still used to generate model outcomes20.

Exploratory analysis has illustrated that it is possible to
augment the basic model with additional health states to
capture the I-O response more appropriately, by defining
health states in terms of treatment response15. Here, further
assumptions are required to extend the analysis beyond the
time horizon of the trial in the absence of well-established
approaches to the extrapolation of response measures.
Whereas trial data for OS and PFS (and extrapolated esti-
mates for these variables) can be mapped directly on to the
3-state model, the addition of further health states requires
assumptions to allocate patients between states beyond the
clinical trial period (as summarized in Table 1). In addition,
despite the size of the study on which the current analysis
was based, small patient numbers in each response group,
particularly at the last observation point, can be problematic
for accurate extrapolation23.

Departing from the PSM
Transitions over time between OS and PFS are not directly
modeled by the standard PSM, the assumption being that
patients can either remain in their current health state or
move to a worse health state. A closely aligned limitation is
that the relationships between “early” and “late” progressed

Table 1. Overview of the model frameworks for partitioned survival model and its variants, Markov model and patient level simulation explored to capture I-O
treatment response.
Modela Model overview Survival function applied Assumptions

Conventional PSM Standard 3-state model of pre-progres-
sion, post-progression, and death

RCS 1 knot for both OS and PFS Trial outcomes for PFS and OS were dir-
ectly implemented using survival
analysis for extrapolation.

Conventionalþ response differentiation
extended PSM

Take the standard PSM and differenti-
ate the pre-progression state
between responders and
non-responders

RCS 1 knot for both OS and PFS Trial outcomes for PFS and OS were dir-
ectly implemented using survival
analysis for extrapolation.
Using trial data on stable disease for
non-responders, and partial and
complete responders for responders,
was applied to differentiate the pre-
progression state.

Conventionalþ responseþ progression
differentiation extended PSM

Take the standard PSM and differenti-
ate the pre-progression state
between responders and non-res-
ponders and the post-progression
state to identify conventional vs I-
O response

RCS 1 knot for both OS and PFS Trial outcomes for PFS and OS were dir-
ectly implemented using survival
analysis for extrapolation.
Using trial data on stable disease for
non-responders, and partial and
complete responders for responders,
was applied to differentiate the pre-
progression. Further adjustment was
made to the progression state using
the BOR data.

Immune-response based Markov model State transition model to capture the I-
O mechanism in a more exhaustive
way to capture pre-progression, ini-
tial immune response, durable
immune response, post-response
progression, and death

RCS 1 knot for both OS and PFS Trial outcomes for PFS and OS were
considered where the BOR was
applied to map clinical data to
respective health states.
Survival analysis for extrapolation
was applied.

aAll model frameworks consider a lifetime model horizon over monthly cycles.
Abbreviations: BOR, best overall response; I-O, immuno-oncology; OS, overall survival; PFS, progression free survival; PSM, partitioned survival model; RCS,
restricted cubic splines.
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patients and death are not fully captured in PSM approaches,
as extrapolations may not explicitly reflect the evolving pro-
portion of patients who have progressed2. Enhancing the
descriptive accuracy of the model with the addition of health
states introduces the possibility (and increasingly the need
as the number of states increases) to model transitions
between states explicitly. STMs, of which the two main types
are cohort-based and individual patient-based models, pro-
vide the flexibility to allow for time-dependent parameters,
time to an event or repeated events13.

Markov models

Markov models are possibly the most commonly used form
of cohort-based model in healthcare, to the extent that the
term has come to be used synonymously with
cohort models24.

These models are structured around a mutually exclusive
and exhaustive set of health states with movements between
those states governed by a set of transition probabilities.
They simulate a single cohort and allow transitions to occur
at specified intervals (the cycle length), but do not capture
interactions or dependencies between individuals (which are
important in, for example, communicable diseases). A mod-
eled individual can be in only one state in any cycle13.

Pros and cons
Markov models explicitly address transitions between differ-
ent health states, providing a flexible approach to the mod-
eling of disease dynamics. They diverge from the PSM as
trial endpoints do not directly populate health states (parti-
tioned models incorporate trial results to inform the model
and predict the trial outcomes). The main advantage of these
models and other STMs evaluated at the cohort level is that
they are transparent and are relatively straightforward to
develop, analyze, and communicate, provided the number of
health states is not excessive13.

The main limitation of Markov models is the “memoryless”
assumption, whereby the probability of making the transition
from one state to another is independent of the path taken
to reach that state. Transition probabilities depend neither
on past states, nor on the time spent in the current state
(and methods to relax this restriction, such as the use of tun-
nel states, are themselves not without difficulties). The impli-
cation is that homogeneity is assumed within health states,
since all those within a given health state will have the same
probability of making the transition to any other state20.

While violations of the Markovian assumption can be
accommodated, either by the creation of temporary health
states (tunnel states)25 or defining the transition matrix as a
multi-dimensional array24, these approaches themselves have
drawbacks. The use of tunnel states can potentially increase
the number of model states and respective assumptions,
resulting in large relatively unmanageable models13, and
may be feasible only for an extremely limited number of
items26. The use of multidimensional arrays, on the other
hand, can yield an undesirable increase in the complexity of

the model27. Where significant heterogeneity exists between
patients in terms of response to treatment (perhaps driven
by variation in baseline characteristics), then an individual
level model may be preferred.

Patient level simulation

In contrast with cohort-based models, individual level STMs
accrue costs and outcomes in patients progressing through
the model one at a time (microsimulation). Transitions are
determined by Monte Carlo simulations in which a random
number draw in the range 0–1 determines whether an indi-
vidual satisfies the criterion for making a transition (the ran-
dom number is greater or less than a pre-determined
probability). Model outcomes are reported for each individual
patient rather than an aggregated group of similar patients.
PLS can be based on health states, analogous to STMs, on
events of interest, using discrete event simulation (DES), or a
combination of the two24.

Pros and cons
A key feature of the PLS approach is that it can record the
event history for individual patients and use this to update
the risk of future events accordingly. It therefore avoids the
“memory-less” characteristic of Markov models. Additionally,
PLS has an advantage in analyzing the relationship between
the variation in patient characteristics (patient heterogeneity)
and model outcomes.

Drawbacks of the PLS approach in the form of computa-
tional and data requirements have been acknowledged, with
a greatly increased number of calculations and, conse-
quently, the use of specialist software required by DES. The
data requirements of DES and difficulties of communicating
this type of model mean that it may not be as transparent
as other model types. At the same time, attempting to repli-
cate the approach using a cohort-based model has been
argued to be equally onerous in terms of data require-
ments27. To compare PSM, Markov, and PLS models on a
like-for-like basis, this study reports a comparison using the
same model framework, data set and software, and survival
analysis as set out below.

Patient heterogeneity
In a Markov model, the impact of patient heterogeneity is
explored to an extent by sensitivity analysis, but primarily by
estimating the model for separate sub-groups, which are
defined in advance, to estimate results in broad categories of
patients (e.g. 5-year age bands) for whom outcomes are
expected to be similar24. Where patient characteristics can-
not be defined in advance but there is a non-linear relation-
ship with outcomes, model averaging can sometimes be
used. However, these approaches have shortcomings when
the number of categories needed to define homogeneous
groups is large. In addition, partitioning data as done with
the PSM is reliant on observed clinical data, while cohort
models generally organize the model structure to predict the
reported results (over the time horizon of the clinical trial,

JOURNAL OF MEDICAL ECONOMICS 535



with methods of extrapolation used to model longer term
outcomes)14. To provide an adequate representation of the
range of patient profiles, it has been argued that the number
of groups would need to be vast, requiring the analyst to
focus on a feasible few. In this case, PLS can represent an
analytically more tractable solution27, with baseline hetero-
geneity between patients found in one review to be the
most important reason stated by study authors for conduct-
ing a simulation modeling approach28.

Methods: empirical analysis

CheckMate 067

CheckMate 067 (NCT01844505) is an ongoing phase 3 dou-
ble-blind clinical trial of 945 treatment-naïve patients with
metastatic melanoma who were randomly assigned 1:1:1 to
the following regimes (as defined by the clinical trial)17:

1. 3mg/kg of nivolumab (n¼ 316) every 2 weeks (plus
matched ipilimumab placebo);

2. 3mg/kg of ipilimumab (n¼ 315) every 3 weeks for 4
doses (plus matched nivolumab placebo); and

3. 1mg/kg of nivolumab plus 3mg/kg of ipilimumab
(n¼ 314) every 3 weeks for 4 doses followed by 3mg/kg
of nivolumab every 2 weeks.

The models discussed here are based on these dosing
schedules rather than the 480mg (extended treatment
option) every 4 weeks schedule available with nivolumab29.
Patients in the combination therapy and ipilimumab mono-
therapy arms were stratified by tumor programmed death-
ligand 1 (PD-L1) status, BRAF mutation status (the gene that
encodes the B-Raf protein), and the American Joint
Committee on Cancer (AJCC) metastasis stage. Treatment

continued until disease progression (defined by the response
evaluation criteria in solid tumors [RECIST] 1.1 system)30,
except in patients with clinical benefit and without substan-
tial adverse events (AEs), or when patients experienced
unacceptable toxicity or withdrew from the study17. Baseline
characteristics were balanced across all treatment groups.
Patients had a mean age of 60 years, 58% had stage M1c dis-
ease, 36.1% had elevated lactate dehydrogenase level (LDH),
31.5% had a BRAF mutation, and 23.6% had positive PD-L1
status. Further details are documented elsewhere17.

PFS and OS were coprimary clinical endpoints of the
CheckMate 067 trial. Secondary endpoints included objective
response rate (ORR) and tumour PD-L1 expression as a pre-
dictive biomarker for efficacy outcomes and safety17. The K-
M curves for PFS and OS serve to illustrate an initial period
of delayed response, a subsequent period when differences
between treatments become apparent through a separation
of the curves and, finally, the emergence of a plateau of
long-term survival.

Recap of the partitioned survival and Markov models

Full details of the methods used in developing the PSM and
Markov approaches (lifetime models with monthly cycles) in
I-O have been reported elsewhere15 (with an overview pro-
vided in Table 1 and outcomes provided in Table 2).

In summary, the standard 3-state PSM was extended ini-
tially by splitting the pre-progression state into two to gener-
ate a four-state model and, secondly, by incrementally
splitting the post-progression state into two to generate a
five-state model. The aim of defining “conventional” and “I-
O” responses was to produce a set of health states which
allowed a more nuanced representation of the immune
response (Figure 2). Patients observed in the clinical trial
were allocated to the new health states using data on

Table 2. Clinical trial and model outcomes for the combination and ipilimumab treatment arms compared across alternative model frameworks for partitioned
survival, Markov, and the patient level simulation.

Endpoint Trial reported Model 1
(3-state PSM)

Model 2
(4-state PSM)

Model 3
(5-state PSM)

Model 4
(Markov model)

Model 5 (PLS
model for base

case –
fixed cohort)

Model 5 (PLS
model for

random cohort)

Nivolumab/
ipilimumab
(n¼ 314)

OS (months [range])9 NR 30 30 30 30 63.0 [3.0–219.0] 19.7 [2–87.02]
OS (%)9,32,37

Year 1 73.0 74.8 74.8 74.8 75.0 84.0 73.0
Year 2 64.0 57.2 57.2 57.2 57.0 70.0 52.0
Year 3 58.0 44.0 44.0 44.0 44.0 58.0 37.0
PFS (months [range])9 11.5 [8.9–16.7] 13 13 13 28 11.5 [2.0–47.0] 7.34 [2–37]
PFS (%)9,32,37

Year 1 50.0 51.3 51.3 51.3 72.0 53.0 38.0
Year 2 43.0 46.0 46.0 46.0 55.0 48.0 32.0
Year 3 39.0 37.0 37.0 37.0 42.0 45.0 30.0

Ipilimumab
(n¼ 315)

OS (months [range])9 20 21 21 21 21 46.8 [3.0, 163.0] 14.5 [2.0, 65.0]
OS (%)9,32,37

Year 1 67.0 66.4 66.4 66.4 66.1 79.0 65.0
Year 2 45.0 45.0 45.0 45.0 44.6 61.0 40.0
Year 3 34.0 31.0 31.0 31.0 30.0 47.0 25.0
PFS (months [range])9 2.8 [2.8–3.4] 3–4 3–4 3–4 — 8.0 [2.0–25.0] 4.8 [2.0–16.0]
PFS (%)9,32,37

Year 1 18.0 15.1 15.1 15.1 66.0 19.0 8.0
Year 2 12.0 13.0 13.0 13.0 44.0 14.0 5.0
Year 3 10.0 10.0 10.0 10.0 29.0 12.0 4.0

The analysis was based on 3 year trial data.
Abbreviations. NR, not reached; OS, overall survival; PFS, progression free survival; PLS, patient level simulation; PSM, partitioned survival model.
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complete or partial response to treatment, as summarized by
best overall response (BOR). In other respects, the models
were estimated in the same manner as the standard three-
state PSM.

Extending from the PSM approaches, a Markov model was
constructed around six states defined in terms of event rates
for PFS/OS, differentiated by BOR, and intended to provide
further granularity in capturing the immune response15. To
avoid excess complexity, movements between states were
dictated by a single (time independent) state transition
matrix based on OS, PFS, and treatment response observed
over the full clinical trial period rather than at each individual
measurement point. This is a simplification of actual patient
transitions between health states and levels of response
(which may vary by cycle). Initial testing of the PSM and
Markov models was conducted using CheckMate 066, com-
paring nivolumab with dacarbazine15, whereas the current
study applies these models, together with the PLS, to the
CheckMate 067 study.

Patient level simulation model overview

A PLS with monthly cycles over a lifetime horizon was devel-
oped in Microsoft Excel. The model simulates adult patients
with metastatic melanoma (Figure 3), to assess immune
response patterns following the initiation of each of the I-O
treatments investigated in the CheckMate 067 trial.
Consistent with the Markov model and for comparative pur-
poses, the PLS captured the outcomes of treatment through
the following events: pre-progression (PP), no immune
response (NIR), initial immune response (IIR), durable immune
response (DIR), and post-response progression (PRP)15.

The model schematic illustrates disease progression and
the possible transitions between states (Figure 3). Each tran-
sition probability is calculated using time-to-event data for

OS and PFS and by applying assumptions based on the best
overall response (BOR) to define the immune response states.
Each patient pair enters the simulation in the treated/pre-
progression state. After initiation of ipilimumab or combin-
ation therapy, the patient may remain progression free with-
out a clinical response (stable disease), based on the absence
of a clinically defined change in tumor size. If the patient
responds to treatment, there are two options. Either the
patient can have a partial response (PR) or a complete
response (CR). These groups were characterized as experienc-
ing an initial immune response (IIR) or a durable immune
response (DIR), respectively. If the patient progresses, tumor
growth can take place as post-response progression (PRP) or
following initiation of treatment, the latter characterized as
“No immune response” (NIR). The occurrence of these events
is determined by the Monte Carlo simulation until the end of
the model period defined by its time horizon or until death,
which can occur from any state.

As the PLS is stochastic in nature and, therefore, yields a
distinct set of results with each simulation, stability in the
results was achieved by running 100 replications of 10,000
patient pairs31. Mean costs and quality adjusted life years
(QALYs) over a lifetime time horizon, together with the confi-
dence intervals (CIs), were obtained across the 100 replica-
tions. The UK National Health Service (NHS) perspective on
costs was adopted, and a discount rate of 3.5% was applied
to both costs and QALYs32. Similarly, the mean clinical out-
comes for OS and PFS14 model outputs were based on an
average of the same replicated simulations over the lifetime
horizon, with respective CIs provided, to allow comparisons
with reported trial outcomes.

The simulation is consistent with previous survival analysis
applications used to derive appropriate functional forms and
define respective survival functions, with model selection
based on visual inspection of K-M plots and goodness-of-fit

Figure 3. Model schematic for the patient level simulation.
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criteria (Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC))33,34.

Baseline characteristics and regression analyses
The model builds on an earlier analysis of standard (includ-
ing Weibull, loglogistic, lognormal) and flexible functions
with restricted cubic splines (RCS) with 0, 1, and 2 knots to
identify the most appropriate way of modeling the unique K-
M curves from the CheckMate 067 trial14. Parametric survival
models allow predictions at any time point for any set of
covariates and more flexible representations of the hazard
function such as RCS can be applied, with the ability to cap-
ture the plateau observed in K-M curves (unlike traditional
parametric methods assessed including Weibull). RCS models
are polynomial functions fitted to segmented portions of the
data at points known as knots, which define the degree of
smoothness of the data fit35. Survival analysis applied to
CheckMate 067 data found that RCS models performed bet-
ter than conventional functions in terms of goodness-of-fit
and coherence, with longer term data, as supported by
research conducted by Gibson et al.14.

To assess the risk of mortality and disease progression,
baseline characteristics consistent with those reported in key
CheckMate 067 trial publications17,18 were considered. These
were (as set out in Tables 3 and 4): age (centred to the
mean trial age of 60 years, reflective of the individual patient
data [IPD]), gender, BRAF mutation, Eastern Cooperative
Oncology Group (ECOG) performance status score, metastasis
stage, brain metastases, LDH, and PD-L1.

A backward stepwise selection procedure was implemented
using a Cox regression model applied to IPD to derive a model
with optimal explanatory power. The least statistically signifi-
cant variables were eliminated until only those explanatory var-
iables with statistical significance above the pre-defined level
(p� 0.1, as few patient characteristics were captured with a p-
value of 0.05) remained. The selection procedures were con-
ducted separately for OS and PFS. Significant variables were
captured for each endpoint, and collectively across endpoints

in the predicted baseline hazard. Hazard ratios were derived
from Weibull and proportional hazards RCS (1 and 2 knots)
models to estimate the adjusted survival estimates for each
patient profile in the PLS (Tables 3 and 4).

Base case and scenarios
The base case PLS model uses the baseline characteristics of
the average trial patient to allow comparability of the clinical
and economic trial outcomes with those of the cohort mod-
els. The model health states for treated/pre-progression and
the proportion of patients achieving an initial and/or durable
immune response are used to estimate PFS model outcomes.
The proportion of fatal events (possible from all health
states) is used to estimate the OS model outcomes. Scenario
analysis considers a cohort which is heterogeneous in terms
of its baseline characteristics and illustrates the impact on
the economic outcomes, particularly when using different
survival distributions (Supplementary Table S1).

Data sources

Costs
A common methodological approach to costing was adopted
in each model. Consistent with the manufacturer’s submis-
sion to NICE (TA400), resource use prior to death uses a
structure based on time since treatment initiation (first year,
second year, third and subsequent years) and proximity to
death. One-off costs were associated with treatment initi-
ation and end-of-life care, while costs for treated/PP, NIR, IIR,
DIR, and PRP in the first, second, and third and later years
were based on monthly costs (Table 5).

Drug costs and costs associated with AEs were deter-
mined by whether patients were on treatment or off treat-
ment. Resource use and unit costs associated with AEs were
drawn from the manufacturer’s submission, and appropri-
ately uprated (drug wastage was not considered here). The
model assumes a maximum time on treatment of 2 years.

Table 3. Coefficients for significant covariates to estimate adjusted hazard for overall survival for Weibull and restricted cubic spline (1 and 2 knots) functions.
Covariates Options Weibull (95% CI) RCS 1 knot (95% CI) RCS 2 knots (95% CI)

Age Normal distribution (l¼ 59.55, SD ¼ 13.74) 0.0097 (0.0011, 0.0183) 0.0096 (0.0010, 0.0182) 0.0096 (0.0010, 0.0182)
Age squared Age2 0.0007 (0.0002, 0.0114) 0.0007 (0.0002, 0.0011) 0.0007 (0.0002, 0.0011)
ECOG performance scorea 0

1
0.6454 (0.3976, 0.8931) 0.6406 (0.3927, 0.8884) 0.6402 (0.3924, 0.8880)

Metastasis stage M0/M1A/M1B¼ 0
M1C¼ 1

0.6185 (0.3374, 0.8996) 0.6130 (0.3318, 0.8942) 0.6127 (0.3315, 0.8939)

LDH > ULN ¼ 0
� ULN ¼ 1

0.9786 (0.7264, 1.2308) 0.9693 (0.7170, 1.2217) 0.9685 (0.7161, 1.2209)

PD-L1 status Positive ¼ 0
Negative ¼ 1

0.6409 (0.3899, 0.8918) 0.6383 (0.3873, 0.8892) 0.6387 (0.3878, 0.8896)

Treatment – combination Yes ¼ 1
No ¼ 0

�0.3396 (�0.6265, �0.0526) �0.3343 (�0.6213, �0.0473) �0.3340 (�0.6209, �0.0470)

Treatment – nivolumab Yes ¼ 1
No ¼ 0

�0.4062 (�0.6971, �0.1152) �0.4024 (�0.6932, �0.1115) �0.4020 (�0.6928, �0.1113)

RCS 0b — 1.1992 (1.0712, 1.3272) 1.6695 (1.1223, 2.2167) 1.5647 (0.8297, 2.2998)
RCS 1 — — 0.0409 (�0.0043, 0.0861) �0.0313 (�0.2529, 0.1903)
RCS 2 — — — 0.1025 (�0.2439, 0.4490)
Constant — �5.4114 (�5.9035, �4.9194) �5.4422 (�5.9386, �4.9457) �5.4898 (�6.0486, �4.9310)
aOnly one person had an ECOG score of 2 and was not included in the analysis.
bRCS 0 is the same as the Weibull distribution.
Abbreviations. CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; PD-L1, programmed death – ligand 1; RCS,
restricted cubic splines, SD, standard deviation; ULN, upper limit of the normal range.
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Following treatment discontinuation, patients move on to
best supportive care (BSC), which has a zero-intervention
cost, but still includes routine healthcare costs. This approach
is recognized as a simplification, but a reasonable

approximation to clinical practice. Unit costs were drawn
from standard sources (e.g. NHS Reference Costs, PSSRU
Costs of Health and Social Care and the British National
Formulary). Costs were uprated from 2014/2015 to

Table 4. Coefficients for significant covariates to estimate adjusted hazard for progression free survival for Weibull and restricted cubic spline (1 and 2
knots) functions.
Covariates Options Weibull (95% CI) RCS 1 knot (95% CI) RCS 2 knots (95% CI)

Age Normal distribution (l¼ 59.55, SD ¼ 13.74) �0.0025 (�0.0089, 0.0039) �0.0029 (�0.0092, 0.0035) �0.0029 (�0.0092, 0.0034)
Age squared Age2 0.0003 (0.0000, 0.0006) 0.0003 (�0.001, 0.0006) 0.0003 (�0.0000, 0.0006)
ECOG performance scorea 0

1
0.1073 (�0.0823, 0.2969) 0.1215 (�0.0678, 0.3107) 0.1202 (�0.0691, 0.3094)

Metastasis stage M0/M1A/M1B¼ 0
M1C¼ 1

0.3201 (0.1432, 0.4971) 0.3268 (0.1503, 0.5033) 0.3299 (0.1534, 0.5065)

LDH > ULN ¼ 0
� ULN ¼ 1

0.5780 (0.4018, 0.7542) 0.5735 (0.3986, 0.7485) 0.5815 (0.4064, 0.7567)

PD-L1 status Positive ¼ 0
Negative ¼ 1

0.4015 (0.2330, 0.5699) 0.4003 (0.2322, 0.5684) 0.4073 (0.2390, 0.5755)

Treatment – combination Yes ¼ 1
No ¼ 0

�1.1141 (�1.3241, �0.9041) �0.9716 (�1.1801, �0.7632) �0.9863 (�1.1953, �0.7773)

Treatment – nivolumab Yes ¼ 1
No ¼ 0

�0.8231 (�1.1024, �0.6225) �0.6818 (�0.8808, �0.4828) �0.6936 (�0.8930, �0.4942)

RCS 0b — 0.9125 (0.8517, 0.9732) 4.3555 (3.9313, 4.7798) 3.4208 (2.3314, 4.5102)
RCS 1 — — 0.1699 (0.1511, 0.1888) �0.1040 (�0.3773, 0.1693)
RCS 2 — — – 0.2629 (0.0019, 0.5239)
Constant — �2.4145 (�2.6703, �2.1586) �2.5801 (�2.8437, �2.3164) �2.8695 (�3.3001, �2.4388)
aOnly one person had an ECOG score of 2 and was not included in the analysis.
bRCS 0 is the same as the Weibull distribution.
Abbreviations. CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; PD-L1, programmed death – ligand 1; RCS,
restricted cubic splines, SD, standard deviation; ULN, upper limit of the normal range.

Table 5. Key model input parameters values used to populate the patient level simulation.
Parameter Regimena Ipilimumab Assumptions and source

Costs (£, 2017)
Treatment (monthly) Nivolumab (10mL) – 1,097.00

Nivolumab (4mL) – 439.00
40mL – 15,000.00
10mL – 3,750.00

Estimates based on licensed dose
BNF 201736,37

Costs (£, 2016)
Pre-progression (non-responders) Estimates taken HTA submission in

same indication and adjusted for
monthly cycles16

Year 1 426.68 426.68
Year 2 213.26 213.26
Year 3þ 128.11 128.11
Pre-progression (responders) Estimates taken HTA submission in

same indication and adjusted for
monthly cycles16

Year 1 118.66 118.66
Year 2 118.66 118.66
Year 3þ 84.21 84.21
No immune response 957.12 957.12 Estimates taken HTA submission in

same indication and adjusted for
monthly cycles16

Post-response progression 957.12 957.12 Estimates taken HTA submission in
same indication and adjusted for
monthly cycles16

Death (one-off) 1,483.89 1,483.89 Estimates taken HTA submission in
same indication and adjusted for
monthly cycles

Adverse events 1,650.10 940.93 Estimates taken HTA submission in
same indication and adjusted for
monthly cycles

Utilities (SE)
Pre-progression (non-responders)b 0.77 (0.02) 0.77 (0.02) Assumption based on

Beusterien et al.38

Pre-progression (responders)c 0.85 (0.02) 0.85 (0.02) Assumption based on
Beusterien et al.38

No immune responsed 0.59 (0.02) 0.59 (0.02) Assumption based on
Beusterien et al.38

Post-response progressione 0.59 (0.02) 0.59 (0.02) Assumption based on
Beusterien et al.38

Death 0.00 0.00 Assumption based on NICE TA400
Adverse events �0.03373 �0.03136 NICE TA400

aRegimen refers to nivolumab/ipilimumab combination therapy.
bPre-progression (non-responders) defines patients considered to have stable disease (pre-progression/treated).
cPre-progression (responders) defines patients with partial (initial immune response) or complete response (durable immune response).
dNo immune response defines non-responders with progressive disease.
ePost-response progression defines patients who progress following an initial or durable response.
Abbreviations. BNF, British national formulary; HTA, health technology assessment; NICE, national institute of health and care excellence; SE, standard error.
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2015/2016 prices using the Hospital and Community Health
Services (HCHS) pay and prices index36. All drug costs are at
current list prices, excluding confidential discounts, such as
those provided under Patient Access Schemes which are cur-
rently in place16,37,38.

Health state utilities
Health-related quality-of-life (HRQoL) estimates suitable for
calculating QALYs were drawn from the literature and
assigned to relevant model health states, without differenti-
ation between patients on- or off-treatment or between
treatment arms. In the absence of literature for specific
health states defined in the models presented, proxy utilities
based on closely related health states were included in
all models39.

To capture the variation in utilities with treatment
response, the analysis used estimates from a universal set of
utility values relating to the clinical response states for partial
response (PR), stable disease (SD) and progressive disease
(PD) in advanced melanoma for the general UK population.
The utility estimate for SD (0.770; standard error (SE) ¼ 0.02)
was allocated to the treated/PP health state. The PR (0.850,
SE ¼ 0.02) utility value was assigned to the IIR and DIR states
(in the absence of information to differentiate between the
level of response). The PD (0.590, SE ¼ 0.02) estimate was
assigned to NIR and PRP states (in the absence of informa-
tion to differentiate between progression in responders and
non-responders)39.

Results

Partitioned survival and Markov models

Table 2 compares the results of the Markov model with
those of the PSM and its variants. In line with previously
reported results15, the PSM-based models provided close
alignment between modeled and 1–3 year trial results for OS
and PFS in the ipilimumab arm and PFS in the combination
therapy arm. In contrast, while the Markov model produced
OS estimates similar to those of the PSMs, the model sub-
stantially overstated PFS, particularly in the ipilimumab arm
(by around 3-fold or greater).

Patient level simulation: base case

Regression analyses
Based on the analyses for OS and PFS, the baseline charac-
teristics included in the model simulation were age, LDH,
metastasis stage, ECOG score, PD-L1, and a dummy variable
representing treatment group. Based on the AIC/BIC tests,
and consistent with previous (PSM and Markov) models, the
RCS with 1 knot was assessed as the most appropriate sur-
vival model for both OS and PFS and, therefore, adopted in
the base case.

Overall survival and progression free survival
Modeled OS for combination treatment was 84%, 70%, and
58% in years 1, 2, and 3, respectively. Modeled OS outcomes
were 15% and 9% higher than the published trial out-
comes17,18 at years 1 (73.0%; 95% CI ¼ 68–78%) and 2
(64.0%; 95% CI ¼ 59–69%), respectively, but matched the
clinical trial results at year 3 (58.0%). Median OS (mOS) was
not reached in the CheckMate 067 trial, but the model pre-
dicts mOS of 63.0 (95% CI ¼ 3–219) months. This can be
interpreted as 5-year survival of � 50%, which is plausible
given the 3-year updates showing the K-M curve starting to
plateau across all treatment arms, with a slight reduction
from months 36 to 45 (from 58% to � 55% OS, based on vis-
ual inspection of the K-M curve34), but will need to be vali-
dated once further data becomes available (4 year data
having recently been published where the mOS still has not
been reached19). Additionally, the CI for mOS implies that
the average patient could experience a survival benefit of up
to 18 years (although applicable to < 3% of patients in the
simulation). When compared with the 10-year pooled ana-
lysis in melanoma showing OS with ipilimumab of 20%5, the
PLS predicted that only 14.2% will experience survival
beyond 10 years. This considerably under-estimated the long-
term estimates for the combination treatment arm relative to
pooled ipilimumab data (where the combination arm would
be expected to perform better than the single I-O therapy),
although a comparison with general population background
mortality could have provided additional validation.

Modeled PFS for the combination treatment arm was
53%, 48%, and 45% at years 1, 2, and 3, respectively. This
was greater than that reported in the trial (50%, 43%, and
39%) by 6–15%. Median PFS (mPFS) of 11.5 (95% CI ¼ 2–47)
months obtained from the model was comparable with the
trial outcome. Based on the CI, a small number of patients
can remain progression-free with combination treatment for
up to 4 years, although this is based on < 2% of the simula-
tions, with the remainder experiencing progression
within 4 years.

For the ipilimumab arm, modeled OS at years 1 (79%), 2
(61%), and 3 (47%) varied by 18–38% from the trial out-
comes (67%, 45%, and 34%), and modeled mOS, at 46.8
(95% CI ¼ 3–163) months, was almost 2.5-times the figure
obtained in the trial. However, mOS is comparable with
recurrence-free survival for ipilimumab vs placebo reported
by Eggermont et al.40 of � 45% at 48months (based on vis-
ual inspection of the K-M curve at 4 years). PFS for the ipili-
mumab arm at years 1 (19%), 2 (14%), and 3 (12%)
compared with the trial outcomes of 18%, 12%, and 10%.
Modeled mPFS of 8 (95% CI ¼ 2–25) months was almost 2.5-
times the published trial result (2.8months, observed in 30%
of the simulated patients).

Compared with the Markov model, the PLS amplified the
OS estimates, although the model generated estimates for
PFS at years 1–3 in both treatment arms which more closely
reflect the trial results, and an estimate of mPFS in the com-
bination treatment arm, which is closer to the trial result.
The closest correspondence between modeled PFS and PFS,
and modeled OS and OS, as reported in the trial, was found
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for the PSM models which are based on direct implementa-
tion of the clinical trial endpoints with additional health
states introduced to capture I-O responses.

Economic model outcomes
The total lifetime cost of treating a patient with combination
therapy in the PLS model was £126,523, compared with
£88,009 for ipilimumab, giving an incremental cost of
£38,513 (Table 6).

Over the lifetime horizon, there were an additional 5.95
QALYs associated with the combination therapy relative to
ipilimumab alone, resulting in an incremental cost-effective-
ness ratio (ICER) of £6,474 per QALY gained. This lies well
within NICE’s lower reference point of £20,000 per QALY. The
PLS gave an almost 3-fold increase in incremental QALY
benefit for the combination regimen compared with the sub-
mitted manufacturer’s model which showed incremental
gains of 2.19 QALYs and 2.26 QALYs for BRAF-negative and
positive patients, respectively, and compared with the cohort
models considered (ranging from 2.16 to 2.43 QALYs). These
findings were a consequence partly of the utilities allocated
to the immune response states and of greater survival bene-
fits given by the PLS, with more flexible data fits used in sur-
vival extrapolation. The PLS generated a greater incremental
cost associated with combination therapy when compared
with all the other models except the Markov model.

Scenario analyses

Scenario analyses are presented in Supplementary Table S1.
Under the Weibull distribution, combination therapy was
estimated to cost £147,480 and to generate 9.83 QALYs,
compared with a total cost of £91,040 and 3.12 QALYs for
ipilimumab. The resulting incremental cost of £56,441 and
incremental QALYs of 6.71 yielded a cost/QALY of £8,410.
The RCS with 2 knots yields lower total costs in each treat-
ment arm, but a similar incremental cost of £35,369 and
lower total QALYs for each treatment. The lower incremental
QALY gain of 3.74 QALYs yielded a cost per QALY of £9,466.
Alternative distributions increase the overall cost/QALY from
the baseline, with the Weibull providing the largest incre-
mental cost and a comparable QALY difference.

Under the heterogeneous scenario, which generates
unique patient characteristics in each simulation, the total
costs in the combination therapy and ipilimumab arms were
£94,466 and £69,991, respectively. The incremental cost of

£24,476 was lower than both the base case and the scen-
arios for Weibull (£56,441) and RCS with 2 knots (£35,369).
Total QALYs were 5.83 and 2.46 QALYs for the combination
and ipilimumab treatment arms, respectively, giving an incre-
mental QALY gain of 3.37 QALYs. This was comparable with
the incremental QALY for RCS with 2 knots (3.74) and lower
than the base case (5.95) or Weibull (6.71) outcomes.

OS in the heterogenous patient simulation for the com-
bination therapy was lower than or equivalent to that
observed in the trial (73%, 64%, and 58%), with comparable
modeled OS in year 1 (73%), but greater divergence in years
2 (52%) and 3 (37%). The mOS of 19.7 (95% CI ¼ 2–87.02)
months was significantly lower than the base case result
(63months) and lower than the other cohort models
(30months). Similarly, for PFS rates, modeled PFS in the
heterogenous population (38%, 32%, and 30%) was lower
than the trial results (50%, 43%, 39%) for years 1–3. The
modeled mPFS of 7.34 (95% CI ¼ 2– 37) months was also
lower than the trial results (11.5months).

OS for the heterogenous population in the ipilimumab
arm was lower for years 1–3 (65%, 40%, and 25%) than the
trial results (67%, 45%, and 34%). The model’s reported mOS
of 14.5 (95% CI ¼ 2–65) months is lower than the trial result
of 20months, although less divergent than the base case
(46.8months). For the PFS rates, modeled outcomes (8%, 5%,
and 4%) were lower than the trial results (18%, 12%, and
10%) for years 1–3, and mPFS was greater for the PLS at 4.8
(95% CI ¼ 2–16) months than reported in the trial, although
more closely comparable than the base case (8months).

Discussion

This paper contributes to ongoing research exploring more
innovative model frameworks and survival analysis methods
to capture I-O responses in the context of methodological
guidance on the structuring of economic models. Although
model structure has not been as extensively covered in the
literature as other model features, the guidance which is
available tends to stress the advantages of retaining simpli-
city while capturing the essential features of the condition
and treatments considered. For example, Philips et al.41 rec-
ommend that the model structure should be as simple as
possible given the decision problem/disease being consid-
ered, while Brennan et al.11 propose that it is desirable to
keep the number of states to a minimum. International
Society for Pharmacoeconomics and Outcomes Research
(ISPOR) guidelines12 propose that a model should be the

Table 6. Discounted economic trial and model outcomes for total costs and total QALYs across the combination and ipilimumab treatment arms.
NICE submission (BRAF –ve) NICE submission (BRAFþ ve) Model 1 Model 2 Model 3 Model 4 Model 5

Total costs (£)
Nivolumab/ipilimumab NR NR 110,519 106,504 106,504 108,930 126,523
Ipilimumab NR NR 79,859 78,874 78,874 63,173 88,009
Difference 22,826 25,502 30,660 27,630 27,630 46,757 38,513

Total QALYs
Nivolumab/ipilimumab 5.06 4.85 4.28 4.61 4.61 3.40 9.93
Ipilimumab 2.90 2.59 2.12 2.18 2.18 2.44 3.98
Difference 2.19 2.26 2.16 2.43 2.43 0.96 5.95

Abbreviations. –ve, negative; þve, positive; BRAF, the gene that encodes the B-Raf protein; NICE, National Institute of Health and Care Excellence;
NR, not reported; QALYs, quality adjusted life years.
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simplest form which still captures the underlying essentials
of the disease process and interventions. Although simplicity
(in terms of model size rather than modeling technique) may
be preferred on the grounds of ease of validation (or may be
enforced by data limitations), the consequence may be in
effect to fix one or more parameters compared with a more
complex model. Reducing from a complex to a simpler
model needs to be justified either by claiming that the
results are robust to changes in the parameter(s) concerned
or because the data are of sufficiently high quality to treat
the value(s) concerned as fixed20. Where it is not possible to
achieve an adequate compromise between granularity in the
representation of disease dynamics and model complexity,
more flexible modeling techniques, potentially involving
increased computational requirements, may be needed.

The 3-state PSM model commonly used in the economic
evaluation of oncology drugs has the advantage of simpli-
city, but may fail to capture unconventional response pat-
terns to I-O, such as a plateau of long-term survival observed
in some patients, and patient heterogeneity. While the range
of health states can be increased, there are limits to the
extent to which the OS curve can be subdivided within the
PSM framework. The use of STMs such as Markov models
can cope with an almost unlimited number of health states,
but the probabilities of moving between them may be
restricted to time-independent uniform transition probabil-
ities dictated by data availability. The poorer correspondence
with short-term trial results found in this study for the
Markov model compared with the PSMs was likely due to
the Markov model’s use of average transition probabilities
that do not capture time-dependence in treatment response,
with time-dependent transitions found to be unachievable
from the patient level trial data.

In order to account for patient heterogeneity more fully, a
PLS model was aligned to the CheckMate 067 trial to capture
immune response patterns and the results compared with
those of cohort models by analysing the clinical and eco-
nomic outcomes. The model captured the most significant
baseline characteristics related to OS and PFS (those with a
P-value � 10%). The characteristics of age, LDH, metastasis
stage, ECOG score, and PD-L1 were identified as significant
using a backward stepwise selection procedure by applying
a Cox regression model. Baseline hazards and adjusted sur-
vival were modeled using the most suitable data fit of RCS
with 1 knot. To assign patients to health states, which were
not directly reported in the trial, observations on BOR were
applied to OS and PFS to give the most appropriate repre-
sentations of health states, in alignment with previous analy-
ses. Proxies from the literature to best reflect the costs and
utilities relevant to the modeled states were also applied15.
Some of the differences in model results could be due to the
greater maturity of the PFS data, for which the tail end of
the data is more stable than is the case with the less mature
OS data. Low patient numbers at the tail could impact sur-
vival fits, a feature which affects the PSM based approaches
as they are directly implemented from the survival data. For
the Markov model, based on transition probabilities mapped

from individual patient data, accuracy may have been
improved with an increased level of granularity in the data.

The main contribution of this research is to demonstrate
the flexibility of the PLS and its scope for modeling complex
problems. The ability to allow for baseline heterogeneity has
the potential to improve model validity without having to
create sub-groups (as required in cohort models), notwith-
standing the many assumptions applied to capture the
immune response within this model framework. The PLS pro-
vides an alternative framework worthy of consideration to
further explore potential characteristics which could help
identify patients most likely to respond to treatment (e.g.
according to the biomarkers being extensively researched),
analyse treatment effects for patient profiles seen in clinical
practice, and inform discussions around HTA for I-O agents.
Improved ways of assessing the value of I-O therapies can
help clinicians to optimize care for their patients and health-
care decision-makers to make the best use of their lim-
ited budgets.

Recently, the Drug Utilization Sub-Committee (DUSC) of
the Australian Department of Health noted that the average
age of the patients receiving melanoma treatment under the
Pharmaceutical Benefits Scheme (PBS) had increased from
63 years in 2014 to 68 years in 2017, which is generally older
than the clinical trial populations (e.g. CheckMate 067 of
60 years) on which economic evaluations are based. The
DUSC recognizes inconsistency between clinical trial out-
comes and clinical practice, where anticipated therapeutic
benefits may differ when used in older patients, or in
patients with poorer performance status, although the treat-
ment lines may be a confounding factor42. Additionally,
hyperprogressive disease (HPD) is a new emerging pattern
observed in cancer patients treated by anti-PD-1/PD-L1 relat-
ing to acceleration of disease progression in a sub-set of
patients that may result from the deleterious effect of
immune checkpoint blockade in I-O. The prevalence, natural
history, and predictive factors of HPD remain unknown.
Research into the tumor growth rate (TGR) is being under-
taken43 and further warrants a better understanding of clin-
ical activity and response in patients.

As the I-O landscape evolves, there is a need to reflect
the mechanism of action more accurately in clinical trial end-
points, as the pre-progression and progressive states which
form the basis of the common 3-state PSM are not well
equipped (due to their high-level aggregation) to capture
treatment responses such as pseudo-progression15,44,45. The
addition of surrogate endpoints or further emphasis on clin-
ical endpoints already reported including ORR may prove
useful in future evaluations. Recommendations for reporting
clinical trials to address unique efficacy, toxicity and combin-
ation and sequencing aspects of immuno-oncology have
been reported by the Trial Reporting in I-O
(TRIO) guidance46.

A limitation of the current research is that the ability to
exploit the advantages of Markov and PLS models to map
trial outcomes is constrained by the extent to which clinical
data can capture the range of immune responses. Although
the quality of data available to populate the model affects
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the validity of all model frameworks, it particularly limits the
PLS and Markov models due to the additional assumptions
required. Therefore, as more innovative frameworks are
developed to better capture I-O concepts, the data used to
populate economic models should also better represent
those concepts. To further validate I-O representations, long-
term data is needed to benchmark clinical trends implied by
economic models and explain model outcomes. Potential
future research with PLS, such as the updating of risk factors
with each event experienced, is similarly data dependent
and can potentially provide more disaggregated results to
illustrate the greatest value of I-O treatments.

Across all model frameworks, more research is needed
alongside clinical trials to identify differences in costs and
utilities across a broader range of health states. If successful
in capturing the pattern of I-O responses and patient move-
ment, alternatives to the standard PSM including Markov and
PLS could be explored to identify preferred modeling
approaches. Future applications which could usefully be
explored include the use of I-O agents in combination with
small molecules, anti-vascular endothelial growth factors
(anti-VEGF), or chemotherapy, and in a range of therapeutic
indications. It is intended that the models developed here
should have wide application in I-O. Further improvements
in the understanding of immune responses with different I-O
approaches could help to inform decisions around the choice
of model and refine the way in which treatment effects are
represented in economic models.
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